Quantum gates II

Quantum computing
G. Chênevert

Jan. 22, 2021

Last time

- Every qubit state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is equivalent to a state of the form

$$
\cos \left(\frac{\theta}{2}\right)|0\rangle+e^{i \varphi} \sin \left(\frac{\theta}{2}\right)|1\rangle
$$

corresponding to a (unique) point on the Bloch sphere.

Certain qubit operations can be represented by 2×2 matrices :

$$
\begin{array}{cc}
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
P=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right] \quad U=\left[\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & -e^{i \lambda} \sin \left(\frac{\theta}{2}\right) \\
e^{i \phi} \sin \left(\frac{\theta}{2}\right) & e^{i(\lambda+\phi)} \cos \left(\frac{\theta}{2}\right)
\end{array}\right]
\end{array}
$$

Review quiz: https://www.wooclap.com/QCOMP2

Quantum gates II

Single qubit gates

Multiple qubit gates

General single qubit gate

Theorem

The time evolution operator on the space of stationary states of a quantum system is represented by a unitary matrix.

Proof.

Consider a time-dependent potential $V(\mathbf{x}, t), 0 \leq t \leq 1$ with $V(\mathbf{x}, 0)=V(\mathbf{x}, 1)$.
The application G induced on the spaces of instantaneous solutions

$$
G: \mathcal{V}_{t=0} \longrightarrow \mathcal{V}_{t=1}
$$

is linear and preserves orthogonality.

Unitary matrices

Remark:

$$
\langle G \psi \mid G \phi\rangle=\langle\psi \mid \phi\rangle \quad \forall \psi, \phi \quad \Longleftrightarrow \quad G^{\dagger} G=I
$$

In general we have $|\operatorname{det} G|=1$; up to matrix equivalence we may assume $\operatorname{det} G=1$.
Then $G^{-1}=G^{\dagger}$ for $N=2$ means

$$
G=\left[\begin{array}{cc}
\alpha & -\beta^{*} \\
\beta & \alpha^{*}
\end{array}\right], \quad|\alpha|^{2}+|\beta|^{2}=1
$$

Special unitary group

$$
\mathrm{SU}_{2}(\mathbb{C})=\left\{\left[\begin{array}{cc}
\alpha & -\beta^{*} \\
\beta & \alpha^{*}
\end{array}\right]\left|\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1\right\}\right.
$$

Two such matrices G_{1} and G_{2} are equivalent $\Longleftrightarrow G_{1}= \pm G_{2}$.
Thus the set (group) of single qubit gates, up to equivalence, is

$$
\mathrm{SU}_{2}(\mathbb{C}) /\{ \pm /\}=: \mathrm{PU}(2)=\mathrm{U}_{2}(\mathbb{C}) /\left\{e^{i \theta} / \mid \theta \in \mathbb{R}\right\}
$$

a 3-dimensional geometric space (Lie group)

General single qubit gate

Any single qubit gate G admits an orthogonal eigenbasis $\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle$ for which

$$
\left\{\begin{array}{l}
G\left|\psi_{0}\right\rangle=e^{+i \sigma}\left|\psi_{0}\right\rangle \\
G\left|\psi_{1}\right\rangle=e^{-i \sigma}\left|\psi_{1}\right\rangle
\end{array}\right.
$$

If $Q|0\rangle=\left|\psi_{0}\right\rangle$ and $Q|1\rangle=\left|\psi_{1}\right\rangle$, then

$$
Q^{\dagger} G Q=\left[\begin{array}{cc}
e^{+i \sigma} & 0 \\
0 & e^{-i \sigma}
\end{array}\right] \sim P(-2 \sigma)
$$

On the Bloch sphere, G is a rotation of angle -2σ around the axis through the orthogonal states $\left|\psi_{0}\right\rangle$ and $\left|\psi_{1}\right\rangle$.

Other point of view

Consider the images

$$
\left\{\begin{array}{l}
\left|\phi_{0}\right\rangle=G|0\rangle \\
\left|\phi_{1}\right\rangle=G|1\rangle
\end{array}\right.
$$

and write Bloch parameters

$$
\left|\phi_{0}\right\rangle=\cos \left(\frac{\theta}{2}\right)|0\rangle+\sin \left(\frac{\theta}{2}\right) e^{i \varphi}|1\rangle .
$$

Then $\left|\phi_{1}\right\rangle \sim-\sin \left(\frac{\theta}{2}\right)|0\rangle+\cos \left(\frac{\theta}{2}\right) e^{i \varphi}|1\rangle$ with phase factor, say, $e^{i \lambda}$

$$
\Longrightarrow G=\left[\begin{array}{ll}
\left|\phi_{0}\right\rangle & \left|\phi_{1}\right\rangle
\end{array}\right]=\left[\begin{array}{ll}
\cos \left(\frac{\theta}{2}\right) & -\sin \left(\frac{\theta}{2}\right) e^{i \lambda} \\
\sin \left(\frac{\theta}{2}\right) e^{i \varphi} & \cos \left(\frac{\theta}{2}\right) e^{i(\varphi+\lambda)}
\end{array}\right]=U(\theta, \varphi, \lambda)
$$

Two points of view

- axis \mathbf{u} and rotation angle σ
- image of vertical axis \mathbf{z} and phase parameter λ

The relationship between these two representations is a bit complicated...
Unless one is willing to work with quaternions

$$
\mathbb{H}=\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \mathbb{R}\} .
$$

Universal family

Remark: every single qubit gate G can be expressed as a combination of

$$
H \quad \text { and } \quad P(\theta) \quad(\theta \in \mathbb{R}) \quad \text { only. }
$$

Idea:

- express G as a combination of $R_{x}(\alpha), R_{y}(\beta), R_{z}(\gamma)$
- explicit formulas for these 3 kinds of rotations

Corollary: every single qubit gate G can be approximated by a combination of

$$
H \quad \text { and } \quad P\left(\frac{2 \pi}{n}\right) \quad(n \gg 0) \quad \text { only. }
$$

Great!

You now understand all possible programs that can run on imbq-armonk

Bit

 (Classical Computing)0

1

Qubit
(Quantum Computing)

0

1

$$
\mathbb{Z} / 2 \mathbb{Z}=\{I, X\} \quad \text { vs. } \quad \mathrm{PU}_{2}(\mathbb{C})=\{U(\theta, \phi, \lambda)\}_{\theta, \phi, \lambda}=\mathrm{SO}_{3}(\mathbb{R})
$$

Measurement lab

$$
|0\rangle-U-\square=
$$

Quantum gates II

Single qubit gates

Multiple qubit gates

2-qubit system

Consider a system with two qubits A and B. Suppose:
A in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
B in state $|\phi\rangle=\gamma|0\rangle+\delta|1\rangle$
Then the system (A, B) is in state

$$
\begin{gathered}
|\psi\rangle \otimes|\phi\rangle=(\alpha|0\rangle+\beta|1\rangle) \otimes(\gamma|0\rangle+\delta|1\rangle) \\
=\alpha \gamma|0\rangle \otimes|0\rangle+\alpha \delta|0\rangle \otimes|1\rangle+\beta \gamma|1\rangle \otimes|0\rangle+\beta \delta|1\rangle \otimes|1\rangle \\
=\alpha \gamma|00\rangle+\alpha \delta|01\rangle+\beta \gamma|10\rangle+\beta \delta|11\rangle
\end{gathered}
$$

2-qubit system

More generally: the 2-qubit system can be in any linear combination state

$$
a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle \in \mathcal{V}_{2} \otimes \mathcal{V}_{2}
$$

Some of these cannot be written in the form $|\psi\rangle \otimes|\phi\rangle$: called entangled

Example

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}} \quad \text { Bell state }
$$

Two qubit gates

Do we have the analogues of the classical AND, OR, XOR, NAND, ... gates for quantum bits?

NO! They lose information...
Recall: the space of quantum states for a system of 2 qubits is

$$
\mathcal{V}_{2} \otimes \mathcal{V}_{2} \cong \mathcal{V}_{4}
$$

basis $|0\rangle \otimes|0\rangle,|0\rangle \otimes|1\rangle,|1\rangle \otimes|0\rangle,|1\rangle \otimes|1\rangle$ or $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ or $|0\rangle,|1\rangle,|2\rangle,|3\rangle$

2-qubit gates are represented by 4×4 unitary matrices

SWAP gate

$$
\begin{gathered}
|\psi\rangle \otimes|\phi\rangle \mapsto|\phi\rangle \otimes|\psi\rangle \\
\text { SWAP }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\operatorname{diag}(1, X, 1)
\end{gathered}
$$

CNOT = CX gate

$$
C X(|x\rangle \otimes|y\rangle) "=" X^{x}|y\rangle=\left\{\begin{array}{rl}
|y\rangle & \text { if }|x\rangle=|0\rangle \\
X|y\rangle & \text { if }|x\rangle=|1\rangle
\end{array} \quad=|x \oplus y\rangle\right.
$$

To be able to go back we must output $|x\rangle$ as well:

$$
\text { "CX }\left[\begin{array}{c}
|x\rangle \\
|y\rangle
\end{array}\right]=\left[\begin{array}{c}
|x\rangle \\
|x \oplus y\rangle
\end{array}\right] \text { " }
$$

CNOT = CX gate

$$
\mathrm{CX}(|x\rangle \otimes|y\rangle)=|x\rangle \otimes(|x \oplus y\rangle)
$$

$$
C X(|0\rangle \otimes|\phi\rangle)=|0\rangle \otimes|\phi\rangle \quad C X(|1\rangle \otimes|\phi\rangle)=|1\rangle \otimes X|\phi\rangle
$$

$$
C X=\operatorname{diag}(I, X)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Reversible operation ! $\mathrm{CX}^{2}=1$

Exercise

What is the matrix representation of the 2-qubit gate corresponding to the application of X on the first qubit and H on the second qubit?

Quantum gates, general case

General case of a n-qubit system:

$$
\underbrace{\mathcal{V}_{2} \otimes \cdots \otimes \mathcal{V}_{2}}_{n} \cong \mathcal{V}_{2^{n}}
$$

Any reversible quantum operation can be viewed as a $2^{n} \times 2^{n}$ unitary matrix:

$$
G \in U\left(2^{n}\right)
$$

Usually described as a quantum circuit made of gates on smaller numbers of qubits.

