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Last time

• Every qubit state |ψ〉 = α |0〉+ β |1〉 is equivalent to a state of the form

cos( θ2) |0〉+ e iϕ sin( θ2) |1〉

corresponding to a (unique) point on the Bloch sphere.



Certain qubit operations can be represented by 2× 2 matrices :

X =

[
0 1

1 0

]
Y =

[
0 −1

1 0

]
Z =

[
1 0

0 −1

]

H =
1√
2

[
1 1

1 −1

]

P =

[
1 0

0 e iθ

]
U =

[
cos( θ2) −e iλ sin( θ2)

e iφ sin( θ2) e i(λ+φ) cos( θ2)

]

Review quiz: https://www.wooclap.com/QCOMP2

https://www.wooclap.com/QCOMP2
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General single qubit gate

Theorem

The time evolution operator on the space of stationary states of a quantum system is

represented by a unitary matrix.

Proof.

Consider a time-dependent potential V (x, t), 0 ≤ t ≤ 1 with V (x, 0) = V (x, 1).

The application G induced on the spaces of instantaneous solutions

G : Vt=0 −→ Vt=1

is linear and preserves orthogonality.



Unitary matrices

Remark:

〈Gψ |Gφ〉 = 〈ψ |φ〉 ∀ψ,φ ⇐⇒ G †G = I

In general we have | detG | = 1; up to matrix equivalence we may assume detG = 1.

Then G−1 = G † for N = 2 means

G =

[
α −β∗
β α∗

]
, |α|2 + |β|2 = 1.



Special unitary group

SU2(C) =

{[
α −β∗
β α∗

] ∣∣∣∣α, β ∈ C, |α|2 + |β|2 = 1

}

Two such matrices G1 and G2 are equivalent ⇐⇒ G1 = ±G2.

Thus the set (group) of single qubit gates, up to equivalence, is

SU2(C)/{±I} =: PU(2) = U2(C)/{e iθI | θ ∈ R}

a 3-dimensional geometric space (Lie group)



General single qubit gate

Any single qubit gate G admits an orthogonal eigenbasis |ψ0〉, |ψ1〉 for which

G |ψ0〉 = e+iσ |ψ0〉
G |ψ1〉 = e−iσ |ψ1〉

If Q |0〉 = |ψ0〉 and Q |1〉 = |ψ1〉, then

Q†GQ =

[
e+iσ 0

0 e−iσ

]
∼ P(−2σ).

On the Bloch sphere, G is a rotation of angle −2σ around the axis through the

orthogonal states |ψ0〉 and |ψ1〉 .



Other point of view

Consider the images |φ0〉 = G |0〉
|φ1〉 = G |1〉

and write Bloch parameters

|φ0〉 = cos( θ2) |0〉+ sin( θ2) e iϕ |1〉.

Then |φ1〉 ∼ − sin( θ2) |0〉+ cos( θ2) e iϕ |1〉 with phase factor, say, e iλ

=⇒ G =
[
|φ0〉 |φ1〉

]
=

[
cos( θ2) − sin( θ2) e iλ

sin( θ2) e iϕ cos( θ2) e i(ϕ+λ)

]
= U(θ, ϕ, λ)



Two points of view

• axis u and rotation angle σ

• image of vertical axis z and phase parameter λ

The relationship between these two representations is a bit complicated...

Unless one is willing to work with quaternions

H = {a + b i + c j + d k | a, b, c , d ∈ R}.

https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation


Universal family

Remark: every single qubit gate G can be expressed as a combination of

H and P(θ) (θ ∈ R) only.

Idea:

• express G as a combination of Rx(α), Ry (β), Rz(γ)

• explicit formulas for these 3 kinds of rotations

Corollary: every single qubit gate G can be approximated by a combination of

H and P(2πn ) (n >> 0) only.



Great!

You now understand all possible programs that can run on imbq armonk

Z/2Z = {I ,X} vs. PU2(C) = {U(θ, φ, λ)}θ,φ,λ = SO3(R)



Measurement lab
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2-qubit system

Consider a system with two qubits A and B. Suppose:

A in state |ψ〉 = α |0〉+ β |1〉

B in state |φ〉 = γ |0〉+ δ |1〉

Then the system (A,B) is in state

|ψ〉 ⊗ |φ〉 = (α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉)

= αγ |0〉 ⊗ |0〉+ αδ |0〉 ⊗ |1〉+ βγ |1〉 ⊗ |0〉+ βδ |1〉 ⊗ |1〉

= αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉



2-qubit system

More generally: the 2-qubit system can be in any linear combination state

a |00〉+ b |01〉+ c |10〉+ d |11〉 ∈ V2 ⊗ V2

Some of these cannot be written in the form |ψ〉 ⊗ |φ〉: called entangled

Example
|00〉+ |11〉√

2
Bell state



Two qubit gates

Do we have the analogues of the classical AND, OR, XOR, NAND, ... gates for

quantum bits?

NO! They lose information...

Recall: the space of quantum states for a system of 2 qubits is

V2 ⊗ V2 ∼= V4

basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉 or |00〉, |01〉, |10〉, |11〉 or |0〉, |1〉, |2〉, |3〉

2-qubit gates are represented by 4× 4 unitary matrices



SWAP gate

|ψ〉 ⊗ |φ〉 7→ |φ〉 ⊗ |ψ〉

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 = diag(1,X , 1)



CNOT = CX gate

CX(|x〉 ⊗ |y〉) ”= ”X x |y〉 =

 |y〉 if |x〉 = |0〉
X |y〉 if |x〉 = |1〉

= |x ⊕ y〉

To be able to go back we must output |x〉 as well:

”CX

[
|x〉
|y〉

]
=

[
|x〉
|x ⊕ y〉

]
”



CNOT = CX gate

CX(|x〉 ⊗ |y〉) = |x〉 ⊗ (|x ⊕ y〉)

CX
(
|0〉 ⊗ |φ〉

)
= |0〉 ⊗ |φ〉 CX

(
|1〉 ⊗ |φ〉

)
= |1〉 ⊗ X |φ〉

CX = diag(I ,X ) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Reversible operation ! CX2 = I



Exercise

What is the matrix representation of the 2-qubit gate corresponding to the application

of X on the first qubit and H on the second qubit?



Quantum gates, general case

General case of a n-qubit system:

V2 ⊗ · · · ⊗ V2︸ ︷︷ ︸
n

∼= V2n

Any reversible quantum operation can be viewed as a 2n × 2n unitary matrix:

G ∈ U(2n).

Usually described as a quantum circuit made of gates on smaller numbers of qubits.
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